Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 319

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Weakened oxygen adsorbing the Pt-O bond of the Pt catalyst induced by vacancy introduction into carbon support

Okazaki, Hiroyuki*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Ikeda, Takashi*; Yamamoto, Shunya*; Yamaki, Tetsuya*

Journal of Physical Chemistry C, 127(49), p.23628 - 23633, 2023/12

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Magnetic hysteresis induction with nanocolumnar defects in magnetic insulators

Harii, Kazuya*; Umeda, Maki; Arisawa, Hiroki*; Hioki, Tomosato*; Sato, Nana; Okayasu, Satoru; Ieda, Junichi

Journal of the Physical Society of Japan, 92(7), p.073701_1 - 073701_4, 2023/07

 Times Cited Count:1 Percentile:61.99(Physics, Multidisciplinary)

JAEA Reports

Proceedings of the 34th Meeting for Tandem Accelerators and their Associated Technologies

Kabumoto, Hiroshi; Nakagawa, Sohei; Matsuda, Makoto

JAEA-Conf 2022-002, 146 Pages, 2023/03

JAEA-Conf-2022-002.pdf:9.89MB

"The 34th Meeting for Tandem Accelerators and their Associated Technologies" was held on July 21-22, 2022 organized by Nuclear Science Research Institute of the Japan Atomic Energy Agency. This meeting was held only on-line for preventing the spread of COVID-19 infection. The purpose of this meeting is contribution of development for related technology and of management of facilities through exchange of information among the researchers and engineers using and operating electrostatics accelerator facilities like tandem accelerators. There were 25 presentations which contains current status report of facility, technical development of accelerator, research of application. The total number of participants was a hundred, from 26 universities, research organizations and industries. This meeting consisted of only oral session, a poster session was not carried out because of on-line meeting. This proceeding compiles the contents of report papers in the meeting.

Journal Articles

Present status of JAEA-Tokai tandem accelerator

Kabumoto, Hiroshi; Matsuda, Makoto; Nakamura, Masahiko; Ishizaki, Nobuhiro; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Nakagawa, Sohei; Abe, Shinichi

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1109 - 1113, 2023/01

no abstracts in English

Journal Articles

Reports of electro-polishing implementation for quarter-wave resonators, 2

Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01

no abstracts in English

Journal Articles

Elucidation of the mechanism of biomolecular damage in liquid water that occurs on a nanoscale by ion beams

Tsuchida, Hidetsugu*; Majima, Takuya*; Kai, Takeshi

Oyo Butsuri, 91(9), p.553 - 557, 2022/09

In recent years, basic research has been conducted to understand the biological effects of radiation at the atomic level toward advancing particle beam cancer treatment. Here we show some recent results on the basic process of biomolecular damage caused by ion beams in liquid water. A biomolecular solution target was introduced to the vacuum by a liquid molecular beam or microdroplet method. Secondary ion mass spectrometry was applied to measure the fragments of biomolecules emitted from a target irradiated with an ion beam. For the simulation study using a PHITS code, physical nature of secondary electrons produced by ion beam in water was analyzed. The experimental and simulation research determined the energy range of secondary electrons involved in damaging biomolecules in liquid water caused by ion beams. The damage process by secondary electrons near the ion track is described.

Journal Articles

Effect of a 2-MHz RF source on the H$$^-$$ beam extracted from an RF-driven high-intensity H$$^-$$ ion source

Shinto, Katsuhiro; Shibata, Takanori*; Wada, Motoi*

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.230 - 233, 2021/10

In most proton accelerator facilities such as J-PARC, SNS, CERN, a H$$^-$$ ion source equipped with a 2-MHz rf driver for plasma generation produces H$$^-$$ beams. We have reported H$$^-$$ beam characteristics extracted from the J-PARC rf-driven high-intensity H$$^-$$ ion source. We have been developing an emittance measurement apparatus equipped with a highly time-resolved data acquisition system in order to observe fluctuation of the beam emittance in association with the frequency of the rf driver. By using this apparatus, we found that the beam emittance is fluctuated with the frequency with the rf driver and higher harmonics. We will show some obtained results of the emittance fluctuation.

Journal Articles

High-speed emittance measurements for beams extracted from J-PARC RF ion source

Shibata, Takanori*; Shinto, Katsuhiro; Wada, Motoi*; Oguri, Hidetomo; Ikegami, Kiyoshi*; Okoshi, Kiyonori; Nammo, Kesao*

AIP Conference Proceedings 2373, p.050002_1 - 050002_9, 2021/08

Oscillation of emittance and Twiss parameters in the negative ion beam from the J-PARC 2-MHz RF ion source is measured by applications of a double-slit emittance monitor located at the RFQ (Radio Frequency Quadrupole) entrance. The emittance monitor is equipped with a newly-developed 60 MS/s data acquisition system, so that beam current oscillation in a few MHz can be observed with enough time resolution. From the measurement, it is shown that the beam phase space consists of (1) a DC component in the beam core, (2) a 2-MHz oscillating component which takes place both in the beam core and the halo and (3) a doubled RF frequency (4 MHz) oscillation which slightly exists in the beam halo. The major component is the 2-MHz component, which resultantly decides the beam emittance oscillation frequency. A typical value of the beam emittance in the present experiment is 0.34 $$pi$$ mm-mrad, while the amplitude of the 2 MHz oscillation is around 0.04 $$pi$$ mm-mrad. The results indicate that the high-frequency oscillation component occupying about ten-percent of the beam from the RF source travels a few meters passing through a magnetic lens focusing system.

Journal Articles

Phase space formation of high intensity 60 and 80 mA H$$^-$$ beam with orifice in J-PARC front-end

Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.

JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03

Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H$$^-$$ beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H$$^-$$ beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm $$phi$$ orifice for differential pumping of H$$_2$$ gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.

Journal Articles

FE-SEM observation of chains of nanohillocks in SrTiO$$_{3}$$ and Nb-doped SrTiO$$_{3}$$ surfaces irradiated with swift heavy ions

Kitamura, Akane; Ishikawa, Norito; Kondo, Keietsu; Yamamoto, Shunya*; Yamaki, Tetsuya*

Nuclear Instruments and Methods in Physics Research B, 460, p.175 - 179, 2019/12

 Times Cited Count:3 Percentile:32.64(Instruments & Instrumentation)

Irradiation at grazing incidence formed chains of multiple hillocks on the surface of strontium titanate (SrTiO$$_{3}$$) and titanium oxide (TiO$$_{2}$$). They were observed with an atomic force microscope (AFM), however, the AFM measurement gives resolution errors in a nanometer order due to the curvature of the probe tip. To prevent these errors, a field emission scanning electron microscope (FE-SEM) would be a better option for observation. In this study, we performed SEM observations for the chains of the multiple hillocks. Single crystals of SrTiO$$_{3}$$ and TiO$$_{2}$$ were irradiated with 200 MeV $$^{136}$$Xe$$^{14+}$$ in the tandem accelerator at JAEA-Tokai. It was revealed that a lot of isolated hillocks were formed in a line on these surface. The diameter and the interval of those hillocks are discussed in comparison to AFM observation.

Journal Articles

Study of heavy ion acceleration in J-PARC

Harada, Hiroyuki; Saha, P. K.; Kinsho, Michikazu

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 182, 2019/07

Recently, humankind had big discovery about neutron star, which is great big nuclear in the space. They are discovery of neutron star with twice mass of solar in 2010 and observation of gravity wave when two neutron start incorporate in 2017. In order to understand the high dense matter like the neutron star, project of experimental researches by using accelerated heavy ion beams become heated in the world, such RHIC-BES-II program, FAIR project, NICA project, etc. The J-PARC provides MW class high intensity proton beams to many experiments and researches. We have study of the heavy ion beam in J-PARC to fully utilize high intensity ability of J-PARC. We propose the accelerator scheme of the beam in J-PARC and the intensity will reach to the world record. In our talk, we will report the current status of proton beam and the accelerator scheme for the high-intensity heavy ion beam in J-PARC.

Journal Articles

FE-SEM observations of multiple nanohillocks on SrTiO$$_{3}$$ irradiated with swift heavy ions

Kitamura, Akane; Ishikawa, Norito; Kondo, Keietsu; Fujimura, Yuki; Yamamoto, Shunya*; Yamaki, Tetsuya*

Transactions of the Materials Research Society of Japan, 44(3), p.85 - 88, 2019/06

Swift heavy ions can create nanosized hillocks on the surfaces of various ceramics. When these materials are irradiated with swift heavy ions at normal incidence, each ion impact results in the formation of a single hillock on the surfaces. In contrast, irradiation at grazing incidence forms chains of multiple hillocks on the surface, for example, for strontium titanate (SrTiO$$_{3}$$). So far, chains of multiple hillocks have been investigated using atomic force microscopy (AFM). It should be noted that AFM measurements involve systematic errors of several nanometers due to the finite size of the probe tip. Consequently, it is possible that the image of one hillock may merge with that of a neighboring hillock even if the two hillocks are well separated. In contrast to AFM, field-emission scanning electron microscopy (FE-SEM) is a useful technique for obtaining higher-resolution images. In this study, we observed multiple nanohillocks on the surfaces of SrTiO$$_{3}$$ using FE-SEM. Crystals of SrTiO$$_{3}$$(100) and 0.05 wt% Nb-doped SrTiO$$_{3}$$(100) were irradiated with 350 MeV Xe ions, respectively, at grazing incidence, where the angle between the sample surface and the beam was less than 2$$^{circ}$$. On the SrTiO$$_{3}$$ surface, a chain of periodic nanohillocks is created along the ion path. In contrast, black lines accompanied by hillocks are observed on the Nb-doped SrTiO$$_{3}$$ surface.

Journal Articles

Progress of the J-PARC cesiated rf-driven negative hydrogen ion source

Shinto, Katsuhiro; Okoshi, Kiyonori; Shibata, Takanori*; Nammo, Kesao*; Ikegami, Kiyoshi*; Takagi, Akira*; Namekawa, Yuya*; Ueno, Akira; Oguri, Hidetomo

AIP Conference Proceedings 2052, p.050002_1 - 050002_7, 2018/12

 Times Cited Count:6 Percentile:93.93(Physics, Applied)

In the 2017/2018 campaign, the J-PARC cesiated rf-driven negative hydrogen (H$$^-$$) ion source producing H$$^-$$ beam with the beam current of 47 mA accomplished three long-term operations more than 2,000 hours without any serious issues. On the final day of this campaign, the ion source produced an H$$^-$$ beam current of 72 mA so that the linac commissioning group could demonstrate the beam current of 60 mA at the linac exit. We are also conducting an endurance test of a J-PARC-made antenna at a test bench. The antenna achieved the operation time approximately 1,400 hours.

Journal Articles

Fluoropolymer-based nanostructured membranes created by swift-heavy-ion irradiation and their energy and environmental applications

Yamaki, Tetsuya*; Nuryanthi, N.*; Kitamura, Akane; Koshikawa, Hiroshi*; Sawada, Shinichi*; Voss, K.-O.*; Severin, D.*; Tautmann, C.*

Nuclear Instruments and Methods in Physics Research B, 435, p.162 - 168, 2018/11

 Times Cited Count:8 Percentile:62.99(Instruments & Instrumentation)

We used individual single-ion tracks in fluoropolymers with diameters of tens to hundreds of nanometers; chemical etching and ion-track grafting enabled us to develop ion-track and proton-conductive membranes, respectively. In the ion-track membranes of PVDF, strongly-LET-dependent etching was found, so the pore shape as well as the size was exclusively controlled by the track structures. We performed the ion-track grafting of styrene into ETFE to develop nanostructure-controlled proton exchange membranes (PEMs) for applications in PEM fuel cells. Our ion beam technology to develop fluoropolymer-based nanostructures has the potential to apply in the field of filtration processes and fuel cell devices. This would make it possible to provide new microfiltration technology for water treatment, sterilization, petroleum refining and dairy processing.

Journal Articles

Observation of beam current fluctuation extracted from an RF-driven H$$^-$$ ion source

Shinto, Katsuhiro; Shibata, Takanori*; Miura, Akihiko; Miyao, Tomoaki*; Wada, Motoi*

AIP Conference Proceedings 2011, p.080016_1 - 080016_3, 2018/09

 Times Cited Count:5 Percentile:91.75(Physics, Applied)

Journal Articles

Application of carbon nanotube wire for beam profile measurement of negative hydrogen ion beam

Miura, Akihiko; Moriya, Katsuhiro; Miyao, Tomoaki*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.5022 - 5025, 2018/06

A wire-scanner monitor using metallic wire is reliably employed for the beam-profile measurement in the J-PARC linac. Because the loading of negative hydrogen (H$$^{-}$$) ion beam on a wire increases under high-current beam operation, we focus on using a high-durability beam profile monitors by attaching another wire material. Carbon nanotubes (CNT) are made of graphite in a cylindrical shape and have a tensile strength not less than 100 times that of steel. The electric conductivity has higher than that of metals, and hardness is endured thermally around 3000$$^{circ}$$C in a vacuum circumstance. We applied the wires made from CNT to WSM and measured transverse profiles with a 3-MeV H$$^{-}$$ beam. As a result, we obtained the equivalent signal levels taken by carbon wire made of polyacrylonitrile without any damage. In this paper, the signal response when the CNT is irradiated with an H$$^{-}$$ beam and the result of beam profile measurement. In addition, the surface of CNT after 3-MeV beam operation was observed.

Journal Articles

Research on nanostructure-controlled functional membranes using high-energy ion beams; Fluoropolymer-based porous and ion-exchange membranes

Yamaki, Tetsuya*; Kitamura, Akane; Sawada, Shinichi*; Koshikawa, Hiroshi*

Nihon Kaisui Gakkai-Shi, 72(2), p.62 - 74, 2018/04

This review paper is devoted to two topics, i.e., fluoropolymer-based porous and ion-exchange membranes, both of which include the creation of nanostructure-controlled functional membranes with high-energy ion beams. Latent tracks of the MeV-GeV heavy ions in a polymer foil can sometimes be chemically etched out to form a membrane with micro- and nano-sized through-pores, the so-called ion-track membrane. Our focus is on ion-track membranes of poly (vinylidene fluoride) (PVDF) and cation- and anion-exchange membranes (CEMs and AEMs, respectively).

Journal Articles

Preparation of nano-structure controlled ion-exchange membranes by ion beams and their application to seawater concentration

Yamaki, Tetsuya*; Goto, Mitsuaki*; Sawada, Shinichi*; Koshikawa, Hiroshi*; Kitamura, Akane; Higa, Mitsuru*

QST-M-8; QST Takasaki Annual Report 2016, P. 35, 2018/03

We prepared ion exchange membranes by a heavy-ion-track grafting method, and then used them for seawater concentration process. Both the water uptake and resistance were lower for our ion-track grafted membranes than for the conventional $$gamma$$-ray-grafted membranes. The results would be because local and high-density energy deposition due to the ion beam enabled us to control the membrane structure in a nanometer scale. We demonstrate our membranes are suitable for this application.

Journal Articles

Report of the 17th International Conference on Ion Sources (ICIS 2017)

Shinto, Katsuhiro

Kasokuki, 14(4), p.248 - 250, 2018/01

The 17th International Conference on Ion Sources (ICIS 2017) was held on 15th - 20th October 2017 at Geneva in Switzerland. This conference is held biennially. Most of scientists and engineers for ion sources in the world meet at the conference in order to share results of research and development.

Journal Articles

Effect due to RF discharge from a high intensity H$$^-$$ ion source upon the extracted beam

Shinto, Katsuhiro; Shibata, Takanori*; Wada, Motoi*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.648 - 650, 2017/12

In J-PARC, peak H$$^-$$ current of several tens mA is extracted from an ion source driven by a solid-state rf amplifier with the frequency of 2 MHz for production of a cesiated hydrogen plasma. In case of the rf-driven ion source for producing the high-intensity H$$^-$$ current, the plasma density in the source chamber is so high that the ion sheath around the beam extraction area can follow the rf oscillation. The H$$^-$$ beam current fluctuation as large as approximately 1 mA was observed at the average beam current of 44 mA measured by a Faraday cup installed downstream of the ion source. The beam exhibited some fluctuation to the transverse motion as well. To further clarify this high frequency oscillation of the beam extraction sheath, we propose a measurement system using a time-resolved and highly sensitive emittance monitor in order to observe the real-time beam fluctuation in the phase space.

319 (Records 1-20 displayed on this page)